organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-Bis{[1-(9,9-dioxo-10*H*-phenothiazin-10-yl)-2-propyl]dimethylammonium} terephthalate trihydrate

Dong-Xia Zhu,^a Wei Sun,^b Gui-Fu Yang^c and Seik Weng Ng^d*

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, ^bDepartment of Chemistry, Jilin University, Changchun 130012, People's Republic of China, ^cDepartment of Computer Science, Jilin University, Changchun 130012, People's Republic of China, and ^dDepartment of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 13 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.161; data-to-parameter ratio = 17.1.

The protonated dioxopromethazinium cation in the title racemic compound, $2C_{17}H_{21}N_2O_2S^+\cdot C_8H_4O_4^{2-}\cdot 3H_2O$, forms an N-H···O hydrogen bond to the terephthalate dianion through the N atom that is not part of a fused ring. The dianion lies on a center of inversion, and the carboxylate O atoms are also acceptors for two water molecules. One of the uncoordinated water molecules lies on a twofold rotation axis. The hydrogen bonds give rise to a sheet structure.

Related literature

For the structure of dioxopromethazinium picrate, see: Harrison *et al.* (2007). This is the only crystal structure study of the dioxopromethazinium cation.

Experimental

Crystal data $2C_{17}H_{21}N_2O_2S^+ \cdot C_8H_4O_4^{2-} \cdot 3H_2O_4$ $M_r = 853.00$

Monoclinic, C2/ca = 23.309 (2) Å

b = 7.2258 (6) A	
c = 25.315 (2) Å	
$\beta = 91.793 \ (2)^{\circ}$	
V = 4261.7 (6) Å ³	
$\mathbf{Z} = \mathbf{A}$	

Data collection

Bruker APEX2 area-detector	12300 measured reflections
diffractometer	4830 independent reflections
Absorption correction: multi-scan	3132 reflections with $I > 2\sigma(I)$
(<i>SADABS</i> ; Sheldrick, 1996)	$R_{\text{int}} = 0.034$
(SADABS; Sheldrick, 1996) $T_{min} = 0.865, T_{max} = 0.954$	$R_{\rm int} = 0.034$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.161$ S = 1.02 4830 reflections 283 parameters4 restraints

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2n\cdots O3$ $O1w-H1w1\cdots O3$ $O1w-H1w2\cdots O4^{i}$ $O1w-H1w2\cdots O4^{i}$	0.85(1) 0.86(4) 0.86(3)	1.82 (1) 2.21 (3) 1.99 (2)	2.670 (2) 2.953 (4) 2.789 (4)	172 (3) 145 (5) 154 (4)
$O2w - H2w1 \cdots O1w$	0.87 (4)	2.07 (3)	2.836 (4)	146 (5)

Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$

 $0.43 \times 0.25 \times 0.25$ mm

H atoms treated by a mixture of independent and constrained

refinement

 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

T = 295 (2) K

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001) and *OLEX* (Dolomanov *et al.*, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (Grant Nos. 20070307 and 20061001) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2369).

References

Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.

- Bruker (2005). *APEX2* (Version 1.2A) and *SAINT* (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.
- Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
- Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cyst. E63, o3277.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o4830 [doi:10.1107/81600536807058916]

rac-Bis{[1-(9,9-dioxo-10*H*-phenothiazin-10-yl)-2-propyl]dimethylammonium} terephthalate trihydrate

D.-X. Zhu, W. Sun, G.-F. Yang and S. W. Ng

Comment

There are no crystallographic reports on the antihistamine drug, dioxopromethazine, in the Cambridge Structural Database (Version 5.28, Nov. 2006). The first structural was reported only recently (Harrison *et al.*, 2007); the drug is isolated as its salt with picric acid. The title terephthalate salt exists as a trihydrate (Fig. 1); the cation and anion are linked with the water molecules *via* hydrogen bonding (Table 1) into a layer (Fig. 2).

Experimental

Zinc acetate dihydrate (0.3 mmol, 0.06 g), dioxopromethazine (0.3 mmol, 0.106 g), terephthalic acid (0.2 mmol, 0.033 g), sodium hydroxide (0.4 mmol, 0.016 g) and water (15 ml) were placed in a 25-ml, Teflon-lined, stainless-steel Parr bomb. The bomb was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which it was cooled to 298 K. Crystals were isolated from the cool solution.

Refinement

The water and amino hydrogen atoms were located in difference Fourier maps, and were refined with distance restraints of $O-H = N-H = 0.85\pm0.01$ Å. Their temperature factors were freely refined. The carbon-bound hydrogen atoms were placed in calculated positions, and were included in the refinement in the riding model approximation.

Figures

Fig. 1. **Figure 1**. Thermal ellipsoid plot of. Displacement ellipsoids are drawn at the 50% probabability level, and H atoms as spheres of arbitrary radii.

Fig. 2. Figure 2. OLEX (Dolomanov et al., 2003) representation of the sheet structure.

rac-bis{[1-(9,9-dioxo-10H-phenothiazin-10-yl)-2-propyl]dimethylammonium} terephthalate trihydrate

Crystal data

 $2C_{17}H_{21}N_2O_2S^+ \cdot C_8H_4O_4^{2-} \cdot 3H_2O_1$

 $F_{000} = 1808$

$M_r = 853.00$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 23.309 (2) Å
<i>b</i> = 7.2258 (6) Å
<i>c</i> = 25.315 (2) Å
$\beta = 91.793 \ (2)^{\circ}$
V = 4261.7 (6) Å ³
Z = 4

Data collection

Duiu contection	
Bruker APEX2 area-detector diffractometer	4830 independent reflections
Radiation source: fine-focus sealed tube	3132 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 295(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -30 \rightarrow 12$
$T_{\min} = 0.865, \ T_{\max} = 0.954$	$k = -9 \rightarrow 9$
12300 measured reflections	$l = -29 \rightarrow 32$

 $D_{\rm x} = 1.329 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4-22.8^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 295 (2) KBlock, colorless $0.43 \times 0.25 \times 0.25 \text{ mm}$

Cell parameters from 2051 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0868P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
4830 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
283 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.21772 (3)	0.48104 (7)	0.59925 (2)	0.0458 (2)
01	0.18573 (8)	0.3513 (2)	0.56691 (7)	0.0645 (5)
O2	0.24138 (8)	0.4133 (2)	0.64923 (6)	0.0593 (5)
O3	0.43542 (8)	1.1283 (3)	0.62526 (7)	0.0615 (5)
O4	0.48301 (10)	0.8645 (3)	0.63832 (7)	0.0793 (6)

O1w	0.44044 (17)	1.5151 (4)	0.66278 (13)	0.1085 (9)
H1w1	0.429 (2)	1.427 (5)	0.6421 (18)	0.17 (2)*
H1w2	0.4630 (16)	1.603 (4)	0.6535 (18)	0.139 (19)*
O2w	0.5000	1.3494 (7)	0.7500	0.1126 (12)
H2w1	0.482 (2)	1.437 (5)	0.733 (2)	0.17 (2)*
N1	0.26433 (7)	0.8602 (2)	0.61738 (7)	0.0390 (4)
N2	0.38072 (8)	1.0306 (3)	0.71206 (7)	0.0436 (5)
H2n	0.4001 (10)	1.068 (4)	0.6862 (7)	0.067 (8)*
C1	0.17680 (9)	0.6739 (3)	0.61256 (8)	0.0390 (5)
C2	0.11734 (10)	0.6573 (3)	0.61538 (9)	0.0512 (6)
H2	0.0996	0.5459	0.6064	0.061*
C3	0.08490 (11)	0.8041 (4)	0.63130 (10)	0.0570 (7)
Н3	0.0452	0.7934	0.6331	0.068*
C4	0.11219 (11)	0.9684 (4)	0.64464 (10)	0.0520 (6)
H4	0.0905	1.0678	0.6561	0.062*
C5	0.17094 (10)	0.9883 (3)	0.64140 (9)	0.0427 (5)
Н5	0.1880	1.1007	0.6504	0.051*
C6	0.20495 (9)	0.8414 (3)	0.62471 (8)	0.0359 (5)
C7	0.27294 (10)	0.5792 (3)	0.56471 (8)	0.0426 (5)
C8	0.29983 (12)	0.4765 (3)	0.52557 (10)	0.0542 (6)
H8	0.2853	0.3615	0.5156	0.065*
С9	0.34747 (11)	0.5451 (4)	0.50200 (10)	0.0585 (7)
Н9	0.3659	0.4766	0.4765	0.070*
C10	0.36762 (11)	0.7180 (4)	0.51689 (9)	0.0571 (7)
H10	0.3998	0.7651	0.5008	0.069*
C11	0.34165 (10)	0.8222 (3)	0.55458 (9)	0.0488 (6)
H11	0.3565	0.9377	0.5638	0.059*
C12	0.29287 (9)	0.7553 (3)	0.57933 (8)	0.0385 (5)
C13	0.29780 (10)	0.9938 (3)	0.64904 (9)	0.0409 (5)
H13A	0.2720	1.0725	0.6683	0.049*
H13B	0.3198	1.0717	0.6259	0.049*
C14	0.33852 (9)	0.8938 (3)	0.68795 (8)	0.0413 (5)
H14	0.3606	0.8051	0.6675	0.050*
C15	0.30636 (12)	0.7840 (4)	0.72856 (10)	0.0674 (8)
H15A	0.3333	0.7215	0.7518	0.101*
H15B	0.2821	0.6945	0.7109	0.101*
H15C	0.2833	0.8664	0.7487	0.101*
C16	0.35436 (11)	1.1991 (3)	0.73481 (10)	0.0578 (7)
H16A	0.3372	1.2724	0.7069	0.087*
H16B	0.3834	1.2704	0.7532	0.087*
H16C	0.3254	1.1634	0.7590	0.087*
C17	0.42157 (11)	0.9432 (4)	0.75107 (11)	0.0676 (7)
H17A	0.4472	1.0357	0.7654	0.101*
H17B	0.4433	0.8493	0.7338	0.101*
H17C	0.4005	0.8885	0.7791	0.101*
C18	0.46685 (11)	0.9964 (4)	0.61020 (10)	0.0535 (6)
C19	0.48481 (10)	1.0007 (3)	0.55294 (9)	0.0473 (6)
C20	0.51864 (10)	0.8601 (3)	0.53354 (10)	0.0538 (6)
H20	0.5315	0.7657	0.5559	0.065*

supplementary materials

C21	0.53353 (10)	0.8595 (3)	0.48071 (10)	0.0525 (6)
H21	0.5560	0.7641	0.4680	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0613 (4)	0.0344 (3)	0.0419 (3)	-0.0104 (3)	0.0038 (3)	-0.0021 (2)
01	0.0828 (13)	0.0490 (10)	0.0622 (11)	-0.0274 (9)	0.0092 (10)	-0.0186 (8)
O2	0.0853 (13)	0.0430 (9)	0.0497 (10)	0.0019 (9)	0.0023 (9)	0.0106 (7)
03	0.0589 (11)	0.0744 (12)	0.0525 (10)	-0.0136 (10)	0.0213 (9)	-0.0146 (9)
O4	0.1029 (16)	0.0857 (15)	0.0502 (11)	-0.0031 (13)	0.0182 (11)	0.0043 (10)
O1w	0.146 (3)	0.0807 (19)	0.100 (2)	0.0050 (19)	0.017 (2)	0.0020 (16)
O2w	0.123 (4)	0.104 (3)	0.110 (3)	0.000	-0.006 (3)	0.000
N1	0.0377 (10)	0.0373 (9)	0.0417 (10)	-0.0083 (8)	-0.0005 (8)	-0.0068 (7)
N2	0.0370 (10)	0.0584 (12)	0.0355 (10)	-0.0061 (9)	0.0041 (8)	-0.0115 (9)
C1	0.0441 (12)	0.0408 (12)	0.0320 (10)	-0.0095 (10)	0.0002 (9)	0.0019 (9)
C2	0.0500 (14)	0.0569 (15)	0.0466 (13)	-0.0216 (12)	0.0008 (11)	-0.0021 (11)
C3	0.0395 (13)	0.0750 (17)	0.0565 (15)	-0.0112 (13)	0.0021 (11)	-0.0017 (13)
C4	0.0481 (14)	0.0596 (15)	0.0486 (14)	0.0003 (12)	0.0033 (11)	-0.0003 (11)
C5	0.0439 (12)	0.0414 (12)	0.0428 (12)	-0.0042 (10)	0.0018 (10)	0.0019 (9)
C6	0.0383 (11)	0.0379 (11)	0.0312 (10)	-0.0070 (9)	-0.0014 (9)	0.0035 (8)
C7	0.0511 (13)	0.0401 (12)	0.0363 (11)	-0.0046 (10)	-0.0019 (10)	-0.0033 (9)
C8	0.0647 (16)	0.0527 (14)	0.0451 (13)	-0.0050 (12)	0.0013 (12)	-0.0143 (11)
C9	0.0564 (15)	0.0792 (18)	0.0399 (13)	0.0016 (14)	0.0009 (12)	-0.0152 (12)
C10	0.0489 (14)	0.0833 (19)	0.0392 (13)	-0.0079 (13)	0.0030 (11)	-0.0059 (12)
C11	0.0443 (13)	0.0582 (14)	0.0438 (12)	-0.0111 (11)	0.0017 (11)	-0.0051 (11)
C12	0.0402 (11)	0.0427 (12)	0.0322 (10)	-0.0021 (10)	-0.0037 (9)	-0.0008 (9)
C13	0.0434 (12)	0.0372 (11)	0.0421 (12)	-0.0080 (9)	-0.0007 (10)	-0.0064 (9)
C14	0.0432 (12)	0.0447 (12)	0.0362 (11)	-0.0055 (10)	0.0030 (9)	-0.0057 (9)
C15	0.0725 (18)	0.084 (2)	0.0454 (14)	-0.0267 (16)	0.0019 (13)	0.0078 (13)
C16	0.0557 (15)	0.0636 (16)	0.0543 (14)	-0.0073 (13)	0.0044 (12)	-0.0241 (12)
C17	0.0533 (15)	0.095 (2)	0.0539 (15)	0.0014 (15)	-0.0074 (13)	-0.0095 (15)
C18	0.0483 (14)	0.0675 (17)	0.0451 (13)	-0.0199 (13)	0.0095 (11)	-0.0105 (12)
C19	0.0370 (12)	0.0612 (15)	0.0441 (12)	-0.0160 (11)	0.0064 (10)	-0.0098 (11)
C20	0.0476 (14)	0.0635 (16)	0.0506 (14)	-0.0053 (12)	0.0054 (11)	-0.0037 (12)
C21	0.0458 (13)	0.0621 (15)	0.0500 (13)	-0.0062 (12)	0.0100 (11)	-0.0114 (12)

Geometric parameters (Å, °)

S1—O1	1.4377 (17)	С8—Н8	0.9300
S1—O2	1.4495 (17)	C9—C10	1.383 (4)
S1—C1	1.728 (2)	С9—Н9	0.9300
S1—C7	1.730 (2)	C10-C11	1.371 (3)
O3—C18	1.268 (3)	C10—H10	0.9300
O4—C18	1.241 (3)	C11—C12	1.401 (3)
O1w—H1w1	0.86 (4)	C11—H11	0.9300
O1w—H1w2	0.86 (3)	C13—C14	1.528 (3)
O2w—H2w1	0.87 (4)	С13—Н13А	0.9700
N1—C6	1.409 (3)	C13—H13B	0.9700

N1—C12	1.409 (3)	C14—C15	1.515 (3)
N1—C13	1.464 (2)	C14—H14	0.9800
N2—C16	1.488 (3)	C15—H15A	0.9600
N2—C17	1.490 (3)	C15—H15B	0.9600
N2—C14	1.510 (3)	C15—H15C	0.9600
N2—H2n	0.851 (10)	C16—H16A	0.9600
C1—C2	1.395 (3)	C16—H16B	0.9600
C1—C6	1.406 (3)	C16—H16C	0.9600
С2—С3	1.370 (3)	С17—Н17А	0.9600
С2—Н2	0.9300	С17—Н17В	0.9600
C3—C4	1.384 (3)	С17—Н17С	0.9600
С3—Н3	0.9300	C18—C19	1.522 (3)
C4—C5	1.382 (3)	$C19-C21^{i}$	1.380 (3)
С4—Н4	0.9300	C19 - C20	1 386 (3)
C5—C6	1 398 (3)	C20-C21	1 392 (3)
С5—Н5	0.9300	C20—H20	0.9300
C7—C12	1 401 (3)	$C_{21} - C_{19}^{i}$	1 380 (3)
C7—C8	1 401 (3)	C21—H21	0.9300
C8—C9	1.370 (4)		0.9500
01—\$1—02	116.95 (11)	C10-C11-H11	119.9
O1—S1—C1	110.92 (11)	C12—C11—H11	119.9
O2—S1—C1	107.42 (10)	C7—C12—C11	117.5 (2)
O1—S1—C7	111.11 (10)	C7—C12—N1	120.64 (19)
O2—S1—C7	108.12 (11)	C11—C12—N1	121.83 (19)
C1—S1—C7	101.07 (10)	N1—C13—C14	110.54 (16)
H1w1—O1w—H1w2	124 (5)	N1—C13—H13A	109.5
C6—N1—C12	121.67 (16)	C14—C13—H13A	109.5
C6—N1—C13	120.03 (17)	N1—C13—H13B	109.5
C12—N1—C13	118.29 (16)	C14—C13—H13B	109.5
C16—N2—C17	110.67 (19)	H13A—C13—H13B	108.1
C16—N2—C14	114.85 (17)	N2—C14—C15	113.47 (18)
C17—N2—C14	112.7 (2)	N2-C14-C13	109.58 (17)
C16—N2—H2n	105.8 (19)	C15-C14-C13	111.99 (19)
C17—N2—H2n	107.6 (18)	N2-C14-H14	107.2
C14—N2—H2n	104.6 (19)	C15—C14—H14	107.2
C2—C1—C6	121.3 (2)	C13—C14—H14	107.2
C2—C1—S1	119.76 (17)	C14—C15—H15A	109.5
C6—C1—S1	118.69 (16)	C14—C15—H15B	109.5
C3—C2—C1	120.5 (2)	H15A—C15—H15B	109.5
С3—С2—Н2	119.8	C14—C15—H15C	109.5
C1—C2—H2	119.8	H15A—C15—H15C	109.5
C2—C3—C4	118.8 (2)	H15B—C15—H15C	109.5
С2—С3—Н3	120.6	N2—C16—H16A	109.5
С4—С3—Н3	120.6	N2—C16—H16B	109.5
C5—C4—C3	121.6 (2)	H16A—C16—H16B	109.5
С5—С4—Н4	119.2	N2—C16—H16C	109.5
С3—С4—Н4	119.2	H16A—C16—H16C	109.5
C4—C5—C6	120.7 (2)	H16B—C16—H16C	109.5

supplementary materials

С4—С5—Н5	119.6	N2	109.5
С6—С5—Н5	119.6	N2—C17—H17B	109.5
C5—C6—C1	117.04 (19)	H17A—C17—H17B	109.5
C5—C6—N1	122.36 (18)	N2—C17—H17C	109.5
C1—C6—N1	120.52 (19)	H17A—C17—H17C	109.5
C12—C7—C8	121.0 (2)	H17B—C17—H17C	109.5
C12—C7—S1	118.98 (16)	O4—C18—O3	124.9 (2)
C8—C7—S1	119.79 (18)	O4—C18—C19	118.3 (2)
C9—C8—C7	120.2 (2)	O3—C18—C19	116.7 (2)
С9—С8—Н8	119.9	C21 ⁱ —C19—C20	119.1 (2)
С7—С8—Н8	119.9	C21 ⁱ —C19—C18	120.9 (2)
C8—C9—C10	118.8 (2)	C20-C19-C18	119.9 (2)
С8—С9—Н9	120.6	C19—C20—C21	120.3 (2)
С10—С9—Н9	120.6	С19—С20—Н20	119.8
С11—С10—С9	122.1 (2)	С21—С20—Н20	119.8
C11—C10—H10	118.9	C19 ⁱ —C21—C20	120.6 (2)
C9—C10—H10	118.9	C19 ⁱ —C21—H21	119.7
C10-C11-C12	120.3 (2)	C20—C21—H21	119.7
O1—S1—C1—C2	30.0 (2)	C7—C8—C9—C10	-1.2 (4)
O2—S1—C1—C2	-98.98 (19)	C8—C9—C10—C11	0.3 (4)
C7—S1—C1—C2	147.85 (18)	C9-C10-C11-C12	-0.3 (4)
O1—S1—C1—C6	-155.31 (16)	C8—C7—C12—C11	-2.0 (3)
O2—S1—C1—C6	75.75 (18)	S1—C7—C12—C11	173.08 (17)
C7—S1—C1—C6	-37.42 (18)	C8—C7—C12—N1	177.7 (2)
C6—C1—C2—C3	-1.4 (3)	S1—C7—C12—N1	-7.2 (3)
S1—C1—C2—C3	173.13 (18)	C10-C11-C12-C7	1.1 (3)
C1—C2—C3—C4	-0.2 (4)	C10-C11-C12-N1	-178.6 (2)
C2—C3—C4—C5	1.1 (4)	C6—N1—C12—C7	-29.1 (3)
C3—C4—C5—C6	-0.4 (4)	C13—N1—C12—C7	151.99 (19)
C4—C5—C6—C1	-1.2 (3)	C6—N1—C12—C11	150.5 (2)
C4—C5—C6—N1	175.5 (2)	C13—N1—C12—C11	-28.3 (3)
C2—C1—C6—C5	2.1 (3)	C6—N1—C13—C14	110.7 (2)
S1—C1—C6—C5	-172.56 (15)	C12—N1—C13—C14	-70.4 (2)
C2-C1-C6-N1	-174.62 (19)	C16—N2—C14—C15	-74.7 (3)
S1-C1-C6-N1	10.7 (3)	C17—N2—C14—C15	53.3 (3)
C12—N1—C6—C5	-149.3 (2)	C16—N2—C14—C13	51.3 (2)
C13—N1—C6—C5	29.5 (3)	C17—N2—C14—C13	179.32 (18)
C12—N1—C6—C1	27.2 (3)	N1-C13-C14-N2	168.51 (16)
C13—N1—C6—C1	-153.95 (19)	N1-C13-C14-C15	-64.7 (2)
O1—S1—C7—C12	153.49 (17)	O4—C18—C19—C21 ⁱ	177.7 (2)
O2—S1—C7—C12	-76.9 (2)	O3—C18—C19—C21 ⁱ	-1.2 (3)
C1—S1—C7—C12	35.7 (2)	O4—C18—C19—C20	-0.4 (3)
O1—S1—C7—C8	-31.4 (2)	O3—C18—C19—C20	-179.3 (2)
O2—S1—C7—C8	98.2 (2)	C21 ⁱ —C19—C20—C21	-0.4 (4)
C1—S1—C7—C8	-149.2 (2)	C18—C19—C20—C21	177.7 (2)
C12—C7—C8—C9	2.0 (4)	C19—C20—C21—C19 ⁱ	0.4 (4)
S1—C7—C8—C9	-173.0 (2)		

Symmetry codes: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2n…O3	0.85 (1)	1.82 (1)	2.670 (2)	172 (3)
O1w—H1w1···O3	0.86 (4)	2.21 (3)	2.953 (4)	145 (5)
O1w—H1w2···O4 ⁱⁱ	0.86 (3)	1.99 (2)	2.789 (4)	154 (4)
O2w—H2w1···O1w	0.87 (4)	2.07 (3)	2.836 (4)	146 (5)
Symmetry codes: (ii) $x, y+1, z$.				

Fig. 2